QSAR Modeling of COX-2 Inhibitory Activity of Some Dihydropyridine and Hydroquinoline Derivatives Using Multiple Linear Regression (MLR) Method

نویسندگان

  • Somaye Akbari Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Tehran-Iran (IAUPS).
  • Tannaz Zebardast Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Tehran-Iran (IAUPS).
  • Zahra Hajimahdi Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
چکیده مقاله:

COX-2 inhibitory activities of some 1,4-dihydropyridine and 5-oxo-1,4,5,6,7,8-hexahydroquinoline derivatives were modeled by quantitative structure–activity relationship (QSAR) using stepwise-multiple linear regression (SW-MLR) method. The built model was robust and predictive with correlation coefficient (R2) of 0.972 and 0.531 for training and test groups, respectively. The quality of the model was evaluated by leave-one out (LOO) cross validation (LOO correlation coefficient (Q2) of 0.943) and Y-randomization. We also employed a leverage approach for the defining of applicability domain of model. Based on QSAR models results, COX-2 inhibitory activity of selected data set had correlation with BEHm6 (highest eigenvalue n. 6 of Burden matrix/weighted by atomic masses), Mor03u (signal 03/unweighted) and IVDE (Mean information content on the vertex degree equality) descriptors which derived from their structures.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QSAR Modeling of COX -2 Inhibitory Activity of Some Dihydropyridine and Hydroquinoline Derivatives Using Multiple Linear Regression (MLR) Method

COX-2 inhibitory activities of some 1,4-dihydropyridine and 5-oxo-1,4,5,6,7,8-hexahydroquinoline derivatives were modeled by quantitative structure-activity relationship (QSAR) using stepwise-multiple linear regression (SW-MLR) method. The built model was robust and predictive with correlation coefficient (R2) of 0.972 and 0.531 for training and test groups, respectively. The quality of the mod...

متن کامل

QSAR study of HCV NS5B polymerase inhibitors using the genetic algorithm-multiple linear regression (GA-MLR)

Quantitative structure-activity relationship (QSAR) study has been employed for predicting the inhibitory activities of the Hepatitis C virus (HCV) NS5B polymerase inhibitors . A data set consisted of 72 compounds was selected, and then different types of molecular descriptors were calculated. The whole data set was split into a training set (80 % of the dataset) and a test set (20 % of the dat...

متن کامل

detection of volatile compounds of medicinal plants with some nano-sorbents using modified or new methodologies and investigation of antioxidant activity of their methanolic extracts

in this work, a novel and fast method for direct analysis of volatile compounds (davc) of medicinal plants has been developed by holding a filament from different parts of a plant in the gc injection port. the extraction and analysis of volatile components of a small amount of plant were carried out in one-step without any sample preparation. after optimization of temperature, extraction time a...

QSRR Study of Organic Dyes by Multiple Linear Regression Method Based on Genetic Algorithm (GA–MLR

Quantitative structure-retention relationships (QSRRs) are used to correlate paper chromatographic retention factors of disperse dyes with theoretical molecular descriptors. A data set of 23 compounds with known RF values was used. The genetic algorithm-multiple linear regression analysis (GA-MLR) with three selected theoretical descriptors was obtained. The stability and predictability of the ...

متن کامل

QSAR models to predict physico-chemical Properties of some barbiturate derivatives using molecular descriptors and genetic algorithm- multiple linear regressions

In this study the relationship between choosing appropriate descriptors by genetic algorithm to the Polarizability (POL), Molar Refractivity (MR) and Octanol/water Partition Coefficient (LogP) of barbiturates is studied. The chemical structures of the molecules were optimized using ab initio 6-31G basis set method and Polak-Ribiere algorithm with conjugated gradient within HyperChem 8.0 environ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 16  شماره 2

صفحات  525- 532

تاریخ انتشار 2017-06-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023